Перегляд за Автор "Savchenko I. M."
Зараз показуємо 1 - 9 з 9
Результатів на сторінці
Налаштування сортування
Документ Digitization of the educational and scientific space based on STEAM education(Springer Cham, 2024) Dembitska S. V.; Kuzmenko O. S.; Savchenko I. M.; Demianenko V. B.; Safronova H. U.Society’s social demand for highly qualified specialists capable of innovative engineering and technical activities actualizes the need to ensure the quality of engineering and technical training. Such changes require modernization of higher technical education at the legislative and administrative levels. Therefore, the introduction of innovative STEAM (virtual and augmented reality, IT technologies, robotics) into the educational process of higher education institutions is a relevant element of the formation of STEAM skills in students. The purpose of the research is the scientific substantiation, conceptualization and development of a digitalization system of the educational and scientific space of a higher education institution based on STEAM technologies, which will contribute to the adaptation of education seekers to educational activities, ensure procedurally and increase the quality of education. The object of research is the educational process in institutions of higher education. The subject of the research is the theoretical and methodological justification of the possibility and expediency of creating a model of digitalization of the educational and scientific space based on the principles of STEAM education. To achieve the outlined goal, the authors used the following research methods: theoretical-comparative and retrospective analysis of pedagogical, psychological, and sociological sources on the research problem; determined the theoretical foundations of the formation of the digitalization system of the educational and scientific space of the higher education institution based on STEAM; empirical (diagnostics (questionnaires, surveys) to find out the level of interest and activity of students in learning engineering and technical disciplines based on STEAM; pedagogical experiment.Документ Integration of a methodological system of teaching physics and professionally oriented disciplines of the court of contribution(Publishing House of Polonia University „Educator”, 2022) Kuzmenko O. S.; Savchenko I. M.; Savchenko Y. V.; Kryński A. А.The current state of the education system is characterized by the transition to a new qualitative level, which has positive changes in the teaching of physics and professionally oriented disciplines based on STEM technologies. Therefore, the current stage of development of physics education aims to solve the problems of formation, development and self-realization of the students/cadets, which becomes possible by creating appropriate pedagogical conditions that promote self-knowledge, self-improvement and development of creative potential. The article considers the methodological aspects of integration in the development of methods of teaching physics and professionally-oriented disciplines based on STEM technologies. The conceptual apparatus of «integration» and «interdisciplinarity» is outlined. The scientific and theoretical aspect of the methodology of teaching physics based on STEM-technologies in terms of integrated and interdisciplinary approaches is considered, and the effectiveness of the proposed methodological system of teaching physics and professionally oriented disciplines on compliance with educational programs of technical aviation, which also allows to ensure the formation of the basic conceptual apparatus of physics in students and strengthen their independent cognitive and exploratory activities. The results of the study were tested and received a positive assessment at various levels of activities.Документ Methodical features of implementation of the relationship between symmetry and asymmetry based on stem education(JASU, 2022) Kuzmenko O. S.; Savchenko I. M.; Demianenko V. B.The authors analyze the concept of symmetry and asymmetry in the process of teaching physics in technical institutions of higher education. The relationship between symmetry and asymmetry in the process of teaching physics based on STEM technologies is revealed. The use of fundamental ideas of physics (for example, symmetry and asymmetry) taking into account STEM technologies is highlighted. The interrelation of symmetry and conservation laws about their fundamentality is clarified; the technique of the integrated approach of physics and disciplines of the professionally-oriented profile, on an example of studying cosmetic loadings, is presented. It was found that the formation of independent cognitive-exploratory activities of students should use physics problems with consideration of fundamental concepts, such as symmetry caused by the development of motives, cognitive interest and scientific thinking and the acquisition of professional competencies. The demonstration of engineering and technical component of STEM education and development of methods of studying disciplines taught to students of technical institutions of higher education, taking into account the integrated approach and interdisciplinary links, is relevant. The transition to STEM training requires improving the methodology of teaching physics in terms of integrated, systematic, professionally-oriented approaches, which includes: the use of new methods, techniques, teaching aids that would help solve several methodological problems; application and introduction in the educational process of physics of interesting and important scientific achievements, as well as strengthening those aspects that stimulate and intensify the independent cognitive activity of students of technical institutions of higher education. It is established that to improve the quality of teaching physics in future technical specialists it is necessary to systematically improve the methodology of educational and cognitive activities, and more widely apply STEM-learning technologies, which leads to productive mental and practical activities of students in the process of mastering educational material. In the future, work on the study of this problem can be carried out in the following areas: development of a new approach to changing the structure and content of working curricula, improving the content and system of teaching physics taking into account STEM technologies, strengthening the connection between the teaching of physics course and the professional orientation of students of non-physical specialities of technical universities in the context of STEM education.Документ Methodological features of professionally oriented education of physical engineering disciplines based on STEM technologies: aspect of ontological approach(JASU, 2021) Kuzmenko O. S.; Demianenko V. B.; Savchenko I. M.; Demianenko V. M.The article considers the urgency of the problem of interrelation of teaching physics and professionally-oriented disciplines based on STEM-technologies in the conditions of ontological approach in the process of training students in engineering and technical education according to the educational-professional program of speciality 272 “Air Transport”. Developed and proposed methods of teaching physics based on STEM-technologies, taking into account the definition of ontology aimed at forming STEM skills in subjects, due to the statement before educational institutions significantly improve the quality of students’ knowledge, the role of learning in shaping student’s thinking and cognitive abilities development of STEM education. It is determined that one of the innovative directions of modern education is the introduction of STEM education, which involves the integration of sciences aimed at the development of STEM technologies, innovative thinking and meeting the need for well-trained engineering and technical specialists. The methodical features of professionally-oriented teaching of physical engineering disciplines based on STEM technologies taking into account the ontological approach are substantiated. In the process of conducting a pedagogical experiment, theoretical and empirical research methods were used. In particular, the analysis of philosophical, psychological-pedagogical, educational-methodical literature, recommended textbooks and manuals on methods of teaching physics in the context of the development of STEM education was carried out. Observations, questionnaires, testing, surveys, interviews with scientists and students were conducted. These experimental results were comprehensively analyzed and processed, quantitative data using the methods of mathematical statistics. The results of a comparative experiment to identify the effectiveness of the proposed method of teaching physics in the context of STEM education showed that the level of physical knowledge, skills and abilities of students in control groups is lower than the corresponding level in experimental groups.Документ The fundamentality of the laws of innovation processes in the educational eco environment: the aspect of teaching physics on the basis of STEM(JASU, 2024) Kuzmenko O. S.; Savchenko I. M.; Demianenko V. B.; Savchenko Y. V.In the article, as a result of the research, the main directions of innovations in the educational activity of higher education institutions in the context of the development of innovations, in particular STEM education, are identified and analyzed. It has been established that the development of innovativeness affects the modernization of higher education, in particular technical in the context of STEM education. It has been found that the development and implementation of STEM education as a component of innovativeness affects the modernization of physics teaching methods in technical higher education institutions, and physics in particular. This modernization requires taking into account the general trends in the development of psychological and pedagogical aspects of higher education in the context of globalization and European integration processes. The main regularities and conditions of functioning of innovative educational processes in technical institutions of higher education are considered. The concepts of interdisciplinarity and levels of integration of scientific knowledge are analyzed and highlighted: intradisciplinary, interdisciplinary, supradisciplinary, transdisciplinary. The result of the innovation process is the transformation of new types and ways of human life into socio-cultural norms and models that ensure their institutional design, integration and consolidation in the culture of society. New knowledge that arises as direct experience within the framework of research work is removed from the sphere of the cognitive process and transformed into an innovative process in new systems of technological activity. STEM innovations are one of the main socio-cultural prerequisites for the development of social practice, its enrichment with new cognitive, technological forms of human experience, which are subject to reproduction in the process of their mastery by students of higher education of the new generation. It was determined that the achievement of the professional goal for the subject of training is ensured by integrated scientific knowledge of physics and professional disciplines, which is a prerequisite for mastering methods of solving industrial problems, where the difference between educational and professional activities from practical and cognitive activities is considered, taking into account the concept of STEM education.Документ Theoretical and methodological foundations of the creation of an ECO-environment model in the context of STEM education: scientific and educational aspects of innovations(Riga, Latvia : «Baltija Publishing», 2022) Кузьменко О. С.; Дем'яненко В. Б.; Савченко Я. В.; Савченко І. М.; Kuzmenko O. S.; Demianenko V. B.; Savchenko Y. V.; Savchenko I. M.In view of the outlined directions, the updated strategy of reforming the educational sphere requires fundamentally new scientific research, the justified and consistent introduction of new scientific and pedagogical technologies, rational and effective approaches to the organization of scientific and innovative activities in education, the need to create an innovative ECO-environment to ensure high -quality teaching. The main goal of introducing innovations into the system of higher education in Ukraine is the comprehensive development of higher education students and raising the educational level of the individual to ensure the implementation of innovative processes in Ukraine and its European choice (based on STEM technologies, 3D modelling, elements of artificial intelligence; involvement of project activities with the development of science museums to guide young people to technical and engineering disciplines). З огляду на окреслені напрями, оновлена стратегія реформування освітньої сфери потребує принципово нових наукових досліджень, обґрунтованого та послідовного впровадження нових науково-педагогічних технологій, раціональних та ефективних підходів до організації навчання. Науково-інноваційна діяльності в освіті, необхідна для створення інноваційного ЕКО-середовища для забезпечення високоякісного навчання. Головною метою запровадження інновацій у систему вищої освіти України є всебічний розвиток здобувачів вищої освіти та підвищення освітнього рівня особистості для забезпечення реалізації інноваційних процесів в Україні та її Європейський вибір (на основі STEM-технологій, 3D-моделювання, елементів штучного інтелекту; залучення проектної діяльності з розвитком наукових музеїв для спрямування молоді до вивчення технічних і інженерних дисциплін).Документ Theoretical and methodological fundamentalization of science education in the conditions of integration of physics and professionally oriented disciplines on the basis of STEM-education(JASU, 2022) Kuzmenko O. S.; Savchenko I. M.; Demianenko V. B.The emphasis of science education is to increase students science literacy through investigative measures that include planning, measuring, observing, analyzing data, developing and evaluating procedures, and studying evidence based on the introduction of modern learning technologies (STEM-technologies). The article considers the concept of science as a pioneer of “science education”, substantiates the theoretical and methodological fundamentalization of science education on the basis of STEM-education of a technical institution of higher education. It is de-termined that the main function of the system of science education is to provide society with scienceally literate citizens. The information and resources (usually financial) reinforce this system. In the article we have formed a model of science on the development of STEM-educational trends of innovative development of education in Ukraine. We have formed the features of science education on the basis of STEM-technologies that will contribute to the introduction of modern methods of teaching physics and professionally oriented disciplines. The integration processes in education in recent years have become increasingly important, as they are aimed at implementing new educational ideals – the formation of a holistic system of knowledge and skills of the individual, the development of their creative abilities and potential. The idea of integrated teaching of physics and professionally oriented disciplines is relevant, because its successful methodological implementation involves achieving the goal of quality science education, i.e. competi-tive education, able to ensure each person to achieve a life goal, creative self-affirmation in various social spheres. Learning science will allow students to lead a full and responsible life, encouraging them to learn independently, solve new situations, think critically, think creatively, make informed decisions and solve problems. Students should also develop an understanding of the relationship between science, technology, society and the environment (STSE), and strengthen the ability to integrate and apply knowledge and skills in physics and vocational disciplines in technical freelance education. They must be able to address changes and challenges in a constantly evolving society and con-tribute to the science and technological world.Документ Особливості формування інженерного STEM-складника в навчанні фізики та технічних дисциплін в інноваційному освітньо-науковому середовищі технічного ЗВО(НЦ «МАНУ», 2020) Кузьменко О. С.; Савченко І. М.; Дем’яненко В. Б.; Kuzmenko O. S.; Savchenko I. M.; Demianenko V. B.У статті розглядаються актуальні проблеми впровадження STEM-технологій та виокремлення інженерного STEM-складника, що є вагомим для формування у суб’єктів навчання STEM-компе-тентностей. Навчання фізики студентів нефізичних спеціальностей у технічних закладах вищої освіти в умовах реформування фізичної освіти здійснюється, як правило, на І–ІІ курсах. Зміст дисципліни «Фізика» потребує модернізації відповідно до сучасних досягнень фізичної науки і дидактичних принципів побудови курсу фізики, враховуючи фундаментальність, науковість, наступність та міждисциплінарні зв’язки. Тому, модернізуючи вищу освіту в Україні, необхідно зважати на загальні тенденції розвитку систем вищої освіти в контексті глобалізаційних та євроінтеграційних процесів, а саме - тенденції розвитку STEM-освіти. Визначено, що зміни у сфері вищої освіти, зокрема технічної, з урахуванням розвитку STEM-освіти передбачають перегляд концепції підготовки спеціалістів у кожній конкретній галузі діяльності, тому модернізація змісту освіти потребує оновлення навчально-методичної бази (цілей, змісту, методів, форм і засобів), через яку надалі здійснюватиметься реалізація сучасних інноваційних STEM-підходів. Враховуючи сучасні тенденції та основні напрями вдосконалення освітнього процесу, створена методика навчання фізики для ефективного ознайомлення студентів з основами фізики, що потрібно для подальшого вивчення дисциплін професійно зорієнтованого напряму, має бути спрямована не тільки на якісне, науково й методично обґрунтоване викладання змісту її основ, яке забезпечується навчальною діяльністю викладача, а й головно на активізацію самостійної навчально-пошукової діяльності студентів. Така методика має розвивати і стимулювати інтерес до пізнання та розуміння фізики, застосування їх у поясненні явищ і процесів мікросвіту й навколишнього світу загалом і давати студентам дієву систему знань, умінь і навичок, формувати природничо-науковий світогляд. У статті окреслено особливості формування інженерного STEM-складника і наведено приклад розгляду роботи фізичного практикуму з елементами програмування. Визначено, що фізичний експеримент є вагомим чинником розвитку STEM-освіти в закладах вищої освіти техніч-ного профілю та методики навчання фізики. Використання STEM-технологій активізує самостійну пізнавально-пошукову діяльність студентів до вивчення фізико-технічних дисциплін. The article considers the current problems of implementation of STEM-technologies and the separation of engineering STEM-component, which is important for the formation of STEM-competencies in subjects of study. Teaching physics to students of non-physics specialties in technical institutions of higher education in the context of reforming physics education is carried out, as a rule, in the I–II courses. The content of the discipline “Physics” needs to be modernized in accordance with modern achievements of physics science and didactic principles of construction of the course of physics, considering the fundamentals, scientific, continuity and interdisciplinary connections. Therefore, the modernization of higher education in Ukraine requires taking into account the general trends in the development of higher education systems in the context of globalization and European integration processes, namely the trends in the development of STEM-education. It is established that the change in the field of higher education, in particular technics, taking into account the development of STEM-education involves revising the concept of training in each field, so modernizing the content of education requires updating the educational base (goals, content, methods, forms and means), through which in the future the implementation of modern innovative STEM-approaches will be carried out. Taking into account current trends and the main directions of improving the educational process, the method of teaching physics to effectively acquaint students with the basics of physics, which is required for further study of professionally oriented disciplines, should be aimed not only at qualitative, scientifically and methodologically sound teaching, provided by the educational activities of the teacher, and mainly to intensify the independent educational and research activities of students. Such a technique should develop and stimulate interest in knowledge and understanding of physics, their application in explaining the phenomena and processes of the microworld and the world as a whole and give students an effective system of knowledge, skills and form a natural worldview. The article outlines the peculiarities of the formation of the engineering STEM-component and gives an example of consideration of the work of the physics workshop with programming elements. It is determined that the physics experiment is an important factor in the development of STEM-education in higher education institutions of technical profile and methods of teaching physics. The use of STEM-technologies activates the independent cognitive-search activity of students before studying physics and technical disciplines.Документ Фундаменталізаційна спрямованість навчання фізики та технічних дисциплін на основі STEM-технологій(Запорізький національний університет, 2020) Кузьменко О. С.; Савченко І. М.; Kuzmenko O. S.; Savchenko I. M.У статті розглядається аналіз поняття фундаменталізації та формування особливостей вивчення фундаментальних понять з урахуванням розвитку сучасних тенденцій вищої освіти. Фундаменталізація забезпечує універсальне, системоутворювальне, інваріантне знання та сприяє його відбору з величезного обсягу нової наукової інформації. У межах знаннєвої парадигми інноваційного розвитку на засадах STEM освіти є пошук шляхів розв’язання цієї проблеми на рівні універсальних надпредметних знань, до яких належать методологічні. Окреслено принципи фундаменталізації, що ґрунтовно розкривають сутність STEM-освітніх показників та їх значення для подальшого вивчення професійно зорієнтованих дисциплін технічного закладу вищої освіти. Визначені нами принципи фундаменталізації свідчать про те, що зміст навчального матеріалу, форми, методи навчання, що використовуються в освітньому процесі з фізики на основі STEM технологій, мають відповідати системній логіці побудови тих професійно зорієнтованих дисциплін, теоретичною основою яких є фізика. На основі цих знань студенти зможуть моделювати пізнавальні та практичні завдання прикладного характеру з урахуванням концепції STEM-освіти. Відповідно до зазначеного потрібно формувати фундаментальне ядро знань і уявлень з фізики та методологічних STEM компетентностей, що є важливими для студентів у подальшому вивчення дисциплін прикладного характеру за освітніми програмами. Розв’язання цієї проблеми нами вбачається у визначенні міждисциплінарної інтеграції фізики та дисциплін технічного циклу через взаємозумовленість та взаємодоповненість науковості, емпірії та математизації. Відповідно, прослідковуючи фундаменталізацію змісту навчання фізики, потрібно враховувати узагальнені знання студентів на засадах STEM-освіти. У статті розглянуто як приклад визначення центра мас крила літака, де визначено технічний складник STEM-освіти (будова літака та його частин), інженерний складник – використання програми 3D-max для 3D моделювання літака та його конструкцій, а для розрахункових обчислень студентами використовувалась програма Excel. Визначено, що курс фізики для студентів технічного закладу вищої освіти потребує значної математизації та залучення елементів програмування, що сприятиме їхній адаптації до професійної діяльності, що зумовлено специфікою цих навчальних дисциплін. The article considers the analysis of the concept of fundamentalization and the formation of features of the study of fundamental concepts taking into account the development of modern trends in higher education. Fundamentalization provides universal, system-forming, invariant knowledge and facilitates its selection from a huge amount of new scientific information. Within the knowledge paradigm of innovative development on the basis of STEM-education is the search for ways to solve this problem at the level of universal supra-subject knowledge, which includes methodological. The principles of fundamentalization are outlined, which thoroughly reveal the essence of STEM-educational indicators and their significance for further study of professionally oriented disciplines of a technical institution of higher education. The principles of fundamentalization defined by us indicate that the content of educational material, forms, teaching methods used in the educational process of physics on the basis of STEM-technologies should correspond to the system logic of construction of those professionally oriented disciplines, the theoretical basis of which is physics. Based on this knowledge, students will be able to model the cognitive and practical tasks of an applied nature, taking into account the concept of STEM-education. According to the above, it is necessary to form a fundamental core of knowledge and ideas in physics and methodological STEM-competencies, which are important for students in the further study of applied disciplines in educational programs. We see the solution to this problem in determining the interdisciplinary integration of physics and disciplines of the technical cycle through the interdependence and complementarity of science, empiricism and mathematization. Accordingly, following the fundamentalization of the content of teaching physics, it is necessary to take into account the generalized knowledge of students on the basis of STEM-education.